Trang 1/5 - Mã đề thi 102

Họ, tên thí sinh: ...
Số báo danh: ..

Câu 1: \(\lim_{n \to \infty} \frac{1}{5n + 2} \) bằng
A. \(\frac{1}{5} \) . B. 0 . C. \(\frac{1}{2} \) . D. \(+\infty \).

Câu 2: Gọi \(S \) là diện tích của hình phẳng giới hạn bởi các đường \(y = 2^x, x = 0, x = 2 \). Mệnh đê nào dưới đây đúng?
A. \(S = \int_{0}^{2} 2^x \, dx \) . B. \(S = \pi \int_{0}^{2} 2^x \, dx \) . C. \(S = \int_{0}^{2} 2^x \, dx \) . D. \(S = \pi \int_{0}^{2} 2^x \, dx \) .

Câu 3: Tập nghiệm của phương trình \(\log_{2}(x^2 - 1) = 3 \) là
A. \(\{-3; 3\} \) . B. \(\{-3\} \) . C. \(\{3\} \) . D. \(\{-\sqrt{10}; \sqrt{10}\} \) .

Câu 4: Nguyên hàm của hàm số \(f(x) = x^4 + x \) là
A. \(x^4 + x + C \) . B. \(4x^3 + 1 + C \) . C. \(x^5 + x^2 + C \) . D. \(\frac{1}{5}x^5 + \frac{1}{2}x^2 + C \) .

Câu 5: Cho hàm số \(y = ax^3 + bx^2 + cx + d \) \((a, b, c, d \in \mathbb{R}) \) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

Câu 6: Số phức có phân thực bằng 3 và phân ảo bằng 4 là
A. 3 + 4i . B. 4 - 3i . C. 3 - 4i . D. 4 + 3i .

Câu 7: Cho khối chóp có đáy là hình vuông cạnh \(a \) và chiều cao bằng 4a. Thể tích của khối chóp đã cho bằng
A. \(\frac{4}{3}a^3 \) . B. \(\frac{16}{3}a^3 \) . C. \(4a^3 \) . D. \(16a^3 \) .

Câu 8: Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
A. \(y = x^4 - 2x^2 - 1 \) . B. \(y = -x^4 + 2x^2 - 1 \) . C. \(y = x^3 - x^2 - 1 \) . D. \(y = -x^3 + x^2 - 1 \) .

Câu 9: Thể tích của khối cầu bán kính \(R \) bằng
A. \(\frac{4}{3}\pi R^3 \) . B. \(4\pi R^3 \) . C. \(2\pi R^3 \) . D. \(\frac{3}{4}\pi R^3 \) .

Câu 10: Trong không gian \(\text{Oxyz} \), cho hai điểm \(A(1; 1; -2) \) và \(B(2; 2; 1) \). Vectơ \(\overrightarrow{AB} \) có toạ độ là
A. \((3; 3; -1) \) . B. \((-1; -1; -3) \) . C. \((3; 1; 1) \) . D. \((1; 1; 3) \) .

Câu 11: Với \(a \) là số thực dương tùy ý, \(\log_3(3a) \) bằng
A. \(3\log_3 a \) . B. \(3 + \log_3 a \) . C. \(1 + \log_3 a \) . D. \(1 - \log_3 a \) .

Trang 1/5 - Mã đề thi 102
Câu 12: Cho hàm số \(y = f(x) \) có bảng biến thiên như sau

\[
\begin{array}{c|cccc}
 x & -\infty & -1 & 1 & +\infty \\
 y' & + & 0 & - & 0 \\
 y & \infty & 3 & -2 & +\infty \\
\end{array}
\]

Hàm số đã đó đồng biến trên khoảng nào dưới đây?
A. \((-1; +\infty)\). B. \((1; +\infty)\). C. \((-1; 1)\). D. \((-\infty; 1)\).

Câu 13: Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 38 học sinh?
A. \(A^2_{38}\). B. \(2^{38}\). C. \(C^2_{38}\). D. \(38^2\).

Câu 14: Trong không gian \(Oxyz\), đường thẳng \(d: \frac{x+3}{1} = \frac{y-1}{-1} = \frac{z-5}{2}\) có một vector chỉ phương là
A. \(\vec{u}_1 = (3; -1; 5)\). B. \(\vec{u}_4 = (1; -1; 2)\). C. \(\vec{u}_2 = (-3; 1; 5)\). D. \(\vec{u}_3 = (1; -1; -2)\).

Câu 15: Trong không gian \(Oxyz\), mặt phương \(P: 3x + 2y + z - 4 = 0\) có một vector pháp tuyến là
A. \(\vec{n}_3 = (-1; 2; 3)\). B. \(\vec{n}_4 = (1; 2; -3)\). C. \(\vec{n}_2 = (3; 2; 1)\). D. \(\vec{n}_1 = (1; 2; 3)\).

Câu 16: Cho hàm số \(f(x) = ax^3 + bx^2 + c \) \((a, b, c \in \mathbb{R})\). Đồ thị của hàm số \(y = f(x) \) như hình vẽ bên. Số nghiệm thực của phương trình \(4f(x) - 3 = 0 \) là

Câu 17: Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
A. \(\frac{5}{12}\). B. \(\frac{7}{44}\). C. \(\frac{1}{22}\). D. \(\frac{2}{7}\).

Câu 18: Giá trị nhỏ nhất của hàm số \(y = x^3 + 2x^2 - 7x \) trên đoạn \([0; 4]\) bằng
A. \(-259\). B. 68. C. 0. D. \(-4\).

Câu 19: Cho hình chóp \(S.ABCD \) có đáy là hình vuông cạnh \(a\), \(SA \) vuông góc với mặt phương đáy và \(SA = \sqrt{2}a\). Góc giữa đường thẳng \(SC \) và mặt phương đáy bằng
A. \(45^o\). B. \(60^o\). C. \(30^o\). D. \(90^o\).

Câu 20: \(\int_0^1 e^{3x+1} dx \) bằng
A. \(\frac{1}{3}(e^4 - e)\). B. \(e^4 - e\). C. \(\frac{1}{3}(e^4 + e)\). D. \(e^3 - e\).

Câu 21: Trong không gian \(Oxyz\), mặt phương đi qua điểm \(A(1; 2; -2)\) và vuông góc với đường thẳng \(\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{3} \) có phương trình là
A. \(3x + 2y + z - 5 = 0\). B. \(2x + y + 3z + 2 = 0\). C. \(x + 2y + 3z + 1 = 0\). D. \(2x + y + 3z - 2 = 0\).

Câu 22: Số tiệm cận đứng của đồ thị hàm số \(y = \frac{\sqrt{x^4 + 2} - 2}{x^2 + x} \) là

Câu 23: Cho hình chóp \(S.ABC \) có đáy là tam giác vuông đỉnh \(B\), \(AB = a\), \(SA \) vuông góc với mặt phương đáy và \(SA = a\). Khoảng cách từ \(A \) đến mặt phương \((SBC) \) bằng
A. \(\frac{a}{2}\). B. \(a\). C. \(\frac{\sqrt{6}a}{3}\). D. \(\frac{\sqrt{2}a}{2}\).
Câu 24: Một người gửi tiết kiệm vào một ngân hàng với lãi suất 7,2%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhặt vào vón để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 25: Tim hai số thực x và y thỏa mãn (3x + 2yi) + (2 + i) = 2x – 3i với i là đơn vị ảo.
A. x = –2; y = –2. B. x = –2; y = –1. C. x = 2; y = –2. D. x = 2; y = –1.

Câu 26: Ông A dự định sử dụng hết 10 triệu đồng để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có chiều cao bằng chiều dài của bút và đáy là hình tròn có bán kính 30 mm. Giả định gỗ có giá 6 triệu đồng, than chì có giá (đồng). Khi đó giá nguyên vật liệu làm một chiếc bút chì như thế nào?
A. 10; 1; 3 và đường thẳng d:

\[\frac{x+1}{1} = \frac{y-1}{-2} = \frac{z-2}{2} \]

Câu 27: Cho 5 đến 21 dx

\[\frac{\ln 3 + b \ln 5 + c \ln 7}{a} \] với a, b, c là các số hữu tỷ. Mệnh đề nào dưới đây đúng?

Câu 28: Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, BC = 2a, SA vuông góc với mặt phẳng đáy và SA = a. Khoảng cách giữa hai đường thẳng BD và SC bằng
A. \(\frac{\sqrt{30}a}{6} \). B. \(\frac{4\sqrt{21}a}{21} \). C. \(\frac{2\sqrt{21}a}{21} \). D. \(\frac{\sqrt{30}a}{12} \).

Câu 29: Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d:

\[\frac{x+1}{1} = \frac{y-1}{-2} = \frac{z-2}{2} \]

Câu 30: Có bao nhiêu giá trị nguyên của tham số m để hàm số

\[y = \frac{x + 6}{x + 5m} \]

nghịch biến trên khoảng (10; +∞)?

Câu 31: Một chiếc bút chỉ có dạng khối lăng trụ lục giác đều có cạnh đáy 3 mm và chiều cao bằng 200 mm. Thân bút chỉ được làm bằng gỗ và phần lòi được làm bằng than chỉ. Phần lòi có dạng khối lục giác đều có chiều cao bằng chiều đại của bút và đáy là hình tròn có bán kính 1 mm. Giả định 1 m³ gỗ có giá 6a (tiệu đồng), 1 m³ than chỉ có giá 6a (tiệu đồng). Khi đó giá nguyên vật liệu làm một chiếc bút chỉ như trên gần nhất với kết quả nào dưới đây?
A. 84,5 .a (đồng). B. 78,2 .a (đồng). C. 84,5 .a (đồng). D. 78,2 .a (đồng).

Câu 32: Một chất diệm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật \(v(t) = \frac{1}{150} t^2 + \frac{59}{75} \) (m/s), trong đó \(t \) (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất diệm B cùng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 3 giây so với A và có gia tốc bằng \(a \) (m/s²) (\(a \) là hằng số). Sau khi B xuất phát được 12 giây thì diệt kiến A. vận tốc của B tại thời điểm diệt kiến A bằng
A. 20(m/s). B. 16(m/s). C. 13(m/s). D. 15(m/s).

Câu 33: Xét các số phức z thỏa mãn (2 + 3i)(z – 3) là số thuần ảo. Trên mặt phẳng toạ độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. \(\frac{9}{2} \). B. \(3\sqrt{2} \). C. 3. D. \(\frac{3\sqrt{2}}{2} \).

Câu 34: Hệ số của \(x^5 \) trong khai triển biểu thức \((3x + 1)^6 + (2x + 1)^8 \) bằng
Câu 35: Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình $25^x - m.5^{x+1} + 7m^2 - 7 = 0$ có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

Câu 36: Cho hai hàm số $f(x) = ax^3 + bx^2 + cx - 2$ và $g(x) = dx^2 + ex + 2 (a, b, c, d, e \in \mathbb{R})$. Biết rằng đồ thị của hàm số $y = f(x)$ và $y = g(x)$ cắt nhau tại ba điểm có hoành độ lần lượt là $-2; -1; 1$ (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
 A. $\frac{37}{6}$. B. $\frac{13}{2}$. C. $\frac{9}{2}$. D. $\frac{37}{12}$.

Câu 37: Cho $a > 0, b > 0$ thỏa mãn $\log_{10a + 3b + 1}(25a^2 + b^2 + 1) + \log_{10a + b + 1}(10a + 3b + 1) = 2$. Giá trị của $a + 2b$ bằng
 A. $\frac{5}{2}$. B. 6. C. 22. D. $\frac{11}{2}$.

Câu 38: Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^8 + (m - 1)x^5 - (m^2 - 1)x^4 + 1$ đạt cực tiểu tại $x = 0$?

Câu 39: Cho hình lập phương $ABCD.A'B'C'D'$ có tâm O. Gọi I là tâm của hình vuông $A'B'C'D'$ và M là điểm thuộc đoạn thẳng OI sao cho $MO = \frac{1}{2}MI$ (tham khảo hình vẽ). Khi đó cósın của góc tạo bởi hai mặt phẳng $(M'C'D')$ và (MAB) bằng
 A. $\frac{6\sqrt{13}}{65}$. B. $\frac{7\sqrt{85}}{85}$. C. $\frac{6\sqrt{85}}{85}$. D. $\frac{17\sqrt{13}}{65}$.

Câu 40: Cho hàm số $f(x)$ thỏa mãn $f(2) = -\frac{1}{3}$ và $f'(x) = x[f(x)]^2$ với mọi $x \in \mathbb{R}$. Giá trị của $f(1)$ bằng
 A. $-\frac{11}{6}$. B. $-\frac{2}{3}$. C. $-\frac{2}{9}$. D. $-\frac{7}{6}$.

Câu 41: Trong không gian $Oxyz$, cho mặt cầu (S) có tâm $I(-1; 2; 1)$ và đi qua điểm $A(1; 0; -1)$. Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đối với vuông góc với nhau. Thể tích của khối tứ diện $ABCD$ có giá trị lớn nhất bằng
 A. $\frac{64}{3}$. B. 32. C. 64. D. $\frac{32}{3}$.

Câu 42: Trong không gian $Oxyz$, cho mặt cầu $(S): (x - 2)^2 + (y - 3)^2 + (z - 4)^2 = 2$ và điểm $A(1; 2; 3)$. Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với $(S), M$ luôn thuộc mặt phẳng có phương trình là
 A. $2x + 2y + 2z + 15 = 0$. B. $2x + 2y + 2z - 15 = 0$.
 C. $x + y + z + 7 = 0$. D. $x + y + z - 7 = 0$.

Câu 43: Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;19]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng
 A. $\frac{1027}{6859}$. B. $\frac{2539}{6859}$. C. $\frac{2287}{6859}$. D. $\frac{109}{323}$.
Câu 44: Trong không gian Oxyz, cho đường thẳng \(d: \begin{cases} x = 1 + 3t \\ y = -3 \\ z = 5 + 4t \end{cases} \). Gọi \(\Delta \) là đường thẳng đi qua điểm \(A(1; -3; 5) \) và có vectơ chỉ phương \(\vec{u} = (1; 2; -2) \). Đường phân giác của góc nhọn tạo bởi \(d \) và \(\Delta \) có phương trình là

A. \(\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = 6 + 11t \end{cases} \)
B. \(\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases} \)
C. \(\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases} \)
D. \(\begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases} \)

Câu 45: Cho phương trình \(3^x + m = \log_3(x - m) \) với \(m \) là tham số. Có bao nhiêu giá trị nguyên của \(m \in (-15; 15) \) để phương trình đã cho có nghiệm?

A. 16.
B. 9.
C. 14.
D. 15.

Câu 46: Cho khối lăng trụ \(ABCD.A'B'C'D' \), khoảng cách từ \(C \) đến đường thẳng \(BB' \) bằng \(\sqrt{3} \), khoảng cách từ \(A \) đến các đường thẳng \(BB' \) và \(CC' \) lần lượt bằng 1 và 2, hình chiếu vuông góc của \(A \) lên mặt phẳng \((A'B'C') \) là trung điểm \(M \) của \(B'C' \) và \(A'M = \frac{\sqrt{15}}{3} \). Thể tích của khối lăng trụ đã cho bằng

A. \(\frac{\sqrt{15}}{3} \).
B. \(2\sqrt{5} \).
C. \(5 \).
D. \(2\sqrt{15} \).

Câu 47: Cho hai hàm số \(y = f(x) \) và \(y = g(x) \). Hai hàm số \(y = f'(x) \) và \(y = g'(x) \) có đồ thị như hình vẽ bên, trong đó đường cong đảm bảo là đồ thị của hàm số \(y = g'(x) \). Hàm số \(h(x) = f(x + 7) - g \left(2x + \frac{9}{2} \right) \) đồng biến trên khoảng nào dưới đây?

A. \(2; \frac{16}{5} \).
B. \(-\frac{3}{4}; 0 \).
C. \(\left(\frac{16}{5}; +\infty \right) \).
D. \(3; \frac{13}{4} \).

Câu 48: Cho hàm số \(y = \frac{x - 1}{x + 1} \) có đố thị \(C \). Gọi \(I \) là giao điểm của hai tiệm cận của \(C \). Xét tam giác đều \(ABI \) có hai đỉnh \(A, B \) thuộc \(C \), đoạn thẳng \(AB \) có độ dài bằng

A. 3.
B. 2.
C. \(\sqrt{9} \).
D. \(2\sqrt{3} \).

Câu 49: Có bao nhiêu số phức \(z \) thỏa mãn \(|z|(z - 3 - i) + 2i = (4 - i)z \)?

A. 1.
B. 2.
C. 3.
D. 4.

Câu 50: Cho hàm số \(y = \frac{1}{8}x^4 - \frac{7}{4}x^2 \) có đố thị \(C \). Có bao nhiêu điểm \(A \) thuộc \(C \) sao cho tiếp tuyến của \(C \) tại \(A \) cắt \(C \) tại hai điểm phân biệt \(M(x_1; y_1), N(x_2; y_2) \) \((M, N \text{ khác } A) \) thỏa mãn \(y_1 - y_2 = 3(x_1 - x_2) \)?

A. 0.
B. 2.
C. 3.
D. 1.

------------------HẾT------------------